Testimonials Testimonials

Pololu Step-Up/Down 9V 300mA Voltage Regulator S10V3F9

Pololu Step-Up/Down 9V 300mA Voltage Regulator S10V3F9

 
£4.66 incl VAT
(£3.88 exc. tax)
Price in points: 776 points
1062-062
1.00 g.
1 item(s)
End of line
+
Add to wish list

This switching regulator uses the SEPIC topology to produce 9V from input voltages between 2.5V and 18V. The wide input range coupled with its ability to convert both higher and lower input voltages makes it useful for applications where the power supply voltage can vary greatly, as with batteries that start above but discharge below 9V. The compact (0.4″ × 0.575″) module can supply over 300 mA in typical applications.

Overview

The Pololu step-up/step-down voltage regulator S10V3F9 is a switching regulator (also called a switched-mode power supply (SMPS) or DC-to-DC converter) with a single-ended primary-inductor converter (SEPIC) topology. It takes an input voltage from 2.5V to 18V and increases or decreases the voltage to a fixed 9V output with a typical efficiency of 70% to 80%.

This flexibility in input voltage is especially well-suited for battery-powered applications in which the battery voltage begins above 9V and drops below as the battery discharges. Since it lacks the typical restriction that the battery voltage stay above the required voltage throughout its life, new battery packs and form factors can be considered. For instance, a 7-cell battery holder, which might have a 11V output with fresh alkalines but a 8.4V nominal voltage with NiMH cells and a 7.0V output with partially discharged cells, can now be used for a 9V circuit.

In typical applications, this regulator can deliver over 300mA continuous; please see the graphs at the top of this page for a more detailed characterization. The regulator’s thermal shutdown prevents damage from overheating, but it does not have short-circuit or reverse-voltage protection.

Features

  • Input voltage: 2.5V to 18V (can be higher than, the same as, or lower than the 9V output)
  • Fixed 9V output with 4% accuracy
  • Typical continuous output current: 300 mA (actual continuous output current depends on input voltage; see Typical Efficiency and Output Current section above for details)
  • <2 mA typical no-load quiescent current
  • Integrated over-temperature shutoff
  • Small size: 0.40″ × 0.575″ × 0.1″ (10 mm × 15 mm × 3 mm)

Using the Regulator

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Connections

This step-up/step-down regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.4 V) to power down the regulator. The quiescent current in this shutdown mode is dominated by the current in the 10 kΩ pull-up resistor from SHDN to VIN. With SHDN held low, this resistor will draw 0.1 mA per volt on VIN (for example, the shutdown current with a 5V input will be 0.5mA). This pin should only ever be driven low or left floating; this can be accomplished with a physical switch that toggles it between ground and disconnected, or electrically with something like a transistor controlled by an I/O line.

The input voltage should be between 2.5V and 18V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive and be wary of destructive LC spikes (see below for more information).

The four connections are labeled on the back side of the PCB, and they are arranged with a 0.1″ spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1″ grid. You can solder wires directly to the board or solder in either the 4×1 straight male header strip or the 4×1 right-angle male header strip that is included.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs above, this switching regulator typically has an efficiency of 70% to 80%.

The maximum achievable output current of the board varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows output currents at which this voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents represent the limit of the regulator’s capability and cannot be sustained for long periods, so the continuous currents that the regulator can provide are typically lower.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage, the regulator can be destroyed. In Pololu tests with typical power leads (~30" test clips), input voltages above 11V caused spikes over 18V. You can suppress such spikes by soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

Dimensions

Size: 0.4″ × 0.575″ × 0.1″1
Weight: 0.6 g1

General specifications

Minimum operating voltage: 2.5V
Maximum operating voltage: 18V
Continuous output current: 300 mA2
Output voltage: 9V
Reverse voltage protection?: N
Maximum quiescent current: 2 mA3

Notes:

1 Without included optional headers.
2 Typical. Actual continuous output current depends on input voltage.
3 While enabled (SHDN floating) with no load. Actual quiescent current depends on input voltage.

Manufacturer's Details

Manufacturer's SKU :
2095
Manufacturer:
Pololu

No posts found

Write a review

No FAQ found

1062-063
£3.90 incl VAT (£3.25 exc. tax)
1062-063
This switching regulator uses the SEPIC topology to produce 12V from input voltages between 2.5V and 18V. The wide input range coupled with its ability... read more
In stock
Price in points: 650 points

Customers also bought....

2700-051
£0.25 incl VAT (£0.21 exc. tax)
2700-051
Turned Pin 0.3 inch Dil IC Socket 8 Pin Quality DIL sockets with closed pins that accept round pin headers. The pins been machine turned and the main... read more
In stock
Price in points: 42 points

1062-057
£3.43 incl VAT (£2.86 exc. tax)
1062-057
The compact (0.32"×0.515") U3V12F12 switching step-up (or boost) voltage regulator takes an input voltage as low as 2.5V and efficiently boosts it to... read more
In stock
Price in points: 572 points

1613-103
£0.50 incl VAT (£0.42 exc. tax)
1613-103
Designed to be end stacked On/off status is clearly defined on the switch Gold plated SPST contacts housed in blue moulded bodies Sealed bases to prevent... read more
In stock
Price in points: 84 points

2200-290
£0.34 incl VAT (£0.28 exc. tax)
2200-290
4093B Quad 2 Input Nand Schmitt Trig Downloads Datasheet read more
In stock
Price in points: 56 points

2200-620
£0.48 incl VAT (£0.40 exc. tax)
2200-620
40106B Hex Schmitt Trigger Downloads Datasheet read more
In stock
Price in points: 80 points