Testimonials Testimonials

Pololu Step-Up/Down 4-12V, 2A max Regulator, 3-30V Input

£13.93 incl VAT
(£11.61 exc. tax)
Price in points: 2322 points
1062-075
14.000 g.
In stock
+
his powerful step-up/step-down regulator efficiently produces an adjustable 4V to 12V output from input voltages between 3V and 30V while allowing a typical output current of up to 2A when the input voltage is close to the output voltage and offering typical efficiencies of 80% to 90%. Its ability to convert both higher and lower input voltages makes it useful for applications where the power supply voltage can vary greatly, as with batteries that start above but discharge below the regulated voltage.

Overview

These step-up/step-down regulators take an input voltage from 3 V to 30 V and increase or decrease it as necessary to produce an adjustable 4V to 12V output, 9V to 30V version also available. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) with a single-ended primary-inductor converter (SEPIC) topology, and they have a typical efficiency between 80% and 90%. The available output current is a function of the input voltage, output voltage, and efficiency (see the Typical Efficiency and Output Current section below), but it will be around 2 A when the input voltage is close to the output voltage.

The S18V20x regulator family consists of the two adjustable-output versions mentioned above along with four versions that output a fixed 5 V, 6 V, 9 V, or 12 V which we also stock. The different versions of the board all look very similar, so the bottom silkscreen includes a blank space where you can add your own distinguishing marks or labels. This product page applies to both adjustable-output versions of the S18V20x family.

The flexibility in input voltage offered by these regulators is especially well-suited for battery-powered applications in which the battery voltage begins above the desired output voltage and drops below the target as the battery discharges. Without the typical restriction on the battery voltage staying above the required voltage throughout its life, new battery packs and form factors can be considered. For example:

  • A 4-cell battery holder, which might have a 6V output with fresh alkalines or a 4.0V output with partially discharged NiMH cells, can be used with the 5V version of this regulator to power a 5V circuit.
  • A disposable 9V battery powering a 5V circuit can be discharged to under 3V instead of cutting out at 6 V, as with typical linear or step-down regulators.
  • The 6V version of this regulator can be used to enable a wide range of power supply options for a hobby servo project.

The no-load quiescent will typically be between 1mA and 5mA for most combinations of input and output voltages, though the combination of a very high output voltage and a very low input voltage (e.g. when boosting from 3V in to 24V out) can result in quiescent currents on the order of a few dozen milliamps.

The ENABLE pin can be used to put the board in a low-power state that reduces the quiescent current to between 10 and 20µA per volt on VIN (e.g. approximately 30µA with 3V in and 500µA with 30V in).

This regulator has built-in reverse-voltage protection, over-current protection, thermal shutdown (which typically activates at 165°C), and an under-voltage lockout that causes the regulator to turn off when the input voltage is below 2.5V (typical).

Features

  • Input voltage: 2.9V to 32V1
  • Output adjustable from 4V to 12V
  • Typical maximum continuous output current: 2A (when input voltage is close to the output voltage; the Typical Efficiency and Output Current section below shows how the achievable continuous output current depends on input and output voltages)
  • Integrated reverse-voltage protection (up to 30V), over-current protection, over-temperature shutoff, and under-voltage lockout
  • Typical efficiency of 80% to 90%, depending on input voltage, output voltage, and load
  • Four mounting holes for #2 or M2 screws
  • Compact size: 1.7″ × 0.825″ × 0.41″ (48 × 15 × 10.5 mm)
  • Smaller holes for 0.1″ header pins and larger holes for terminal blocks offer several options for connecting to the board

1 32 V is the absolute maximum operating voltage; the recommended maximum operating voltage is 30V, which is the limit of the reverse voltage protection.

Using the regulator

Connections

This step-up/step-down regulator has four connections: input voltage (VIN), ground (GND), and output voltage (VOUT), and ENABLE.

The input voltage, VIN, should be between 2.9V and 32V. Lower input voltages can cause the regulator to shut down or behave erratically; higher input voltages can destroy the regulator, so you should ensure that noise on the input is not excessive. 32 V should be treated as the absolute maximum input voltage. Our recommended maximum operating voltage is 30V, which is the limit of the reverse voltage protection. Additionally, we recommend keeping the sum of the input and output voltages below 55V; see the Setting the Output Voltage section below for more information.

The regulator is enabled by default: a 100 kΩ pull-up resistor on the board connects the ENABLE pin to reverse-protected VIN. The ENABLE pin can be driven low (under 0.7V) to put the board into a low-power state. The quiescent current draw in this sleep mode is dominated by the current in the pull-up resistor from ENABLE to VIN and by the reverse-voltage protection circuit, which will draw between 10µA and 20µA per volt on VIN when ENABLE is held low (e.g. approximately 30µA with 3V in and 500µA with 30V in). If you do not need this feature, you should leave the ENABLE pin disconnected. Note that the SEPIC topology has an inherent capacitor from input to output; therefore, the output is not completely disconnected from the input even when the regulator is shut down.

The connections are labeled on the back side of the PCB, and the board offers several options for making electrical connections. You can solder the included 2-pin 5mm-pitch terminal blocks to the two pairs of larger holes on the ends of the board. Alternatively, if you want to use this regulator with a solderless breadboard, 0.1″-pitch connectors, or other prototyping arrangements that use a 0.1″grid, you can solder pieces of the included 9×1 straight male header strip to the 0.1″-spaced smaller holes (each large through-hole has a corresponding pair of these smaller holes). For the most compact installation, you can solder wires directly to the board.

The board has four mounting holes intended for #2 or M2 screws. In applications where mounting screws are not used and wires are soldered directly to the board, the insulated part of the wires can be passed through the mounting holes for strain relief. The picture above shows an example of this with 20 AWG wire, which was close to the limit of what would fit through the mounting holes.

Setting the output voltage

The output voltage can be adjusted using a multimeter and a light load (e.g. a 10kΩ to 100kΩ resistor). Turning the potentiometer clockwise increases the output voltage. The output voltage can be affected by a screwdriver touching the potentiometer, so the output measurement should be done with nothing touching the potentiometer (also, note that touching parts of the board with your finger can affect the output voltage). The graph above shows the approximate output voltage as a function of the potentiometer position.

Note: We recommend against using this regulator in situations where the sum of the input and output voltages exceeds 55V. For example, if your input voltage could reach 30V, you should keep the output voltage setting under 25V. It is typically not very practical to use the AHV version of this regulator beyond about 24V out; the U3V50AHV step-up voltage regulator will usually be a more appropriate option for higher-output-voltage applications.

The trimmer potentiometer is not rated for continual adjustment back and forth; the intended application is to set the output voltage a few times in its life.

Typical efficiency and output current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs above, these switching regulators have an efficiency of 80% to 90% for most combinations of input voltage, output voltage, and load.

The maximum achievable output current of the board varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graphs below show output currents at which this voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents represent the limit of the regulator’s capability and cannot be sustained for long periods, so the continuous currents that the regulator can provide are typically several hundred milliamps lower.

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Manufacturer's Details

Manufacturer's SKU :
2572
Manufacturer:
Pololu

No posts found

Write a review

No FAQ found

1062-071
£13.06 incl VAT (£10.88 exc. tax)
1062-071
This powerful step-up/step-down regulator efficiently produces a fixed 5V output from input voltages between 3V and 30V while allowing a typical output... read more
In stock
Price in points: 2176 points

1062-072
£13.06 incl VAT (£10.88 exc. tax)
1062-072
This powerful step-up/step-down regulator efficiently produces a fixed 6V output from input voltages between 3V and 30V while allowing a typical output... read more
In stock
Price in points: 2176 points

1062-073
£13.06 incl VAT (£10.88 exc. tax)
1062-073
This powerful step-up/step-down regulator efficiently produces a fixed 9V output from input voltages between 3V and 30V while allowing a typical output... read more
In stock
Price in points: 2176 points

1062-074
£13.06 incl VAT (£10.88 exc. tax)
1062-074
This powerful step-up/step-down regulator efficiently produces a fixed 12V output from input voltages between 3V and 30V while allowing a typical... read more
In stock
Price in points: 2176 points

1062-076
£15.67 incl VAT (£13.06 exc. tax)
1062-076
This powerful step-up/step-down regulator efficiently produces an adjustable 9V to 30V output from input voltages between 3V and 30V while allowing a... read more
In stock
Price in points: 2612 points

Customers also bought....

2702-001
£0.56 incl VAT (£0.47 exc. tax)
2702-001
Along with the matching pre-crimped wires, you can now make your own cable assemblies for your projects. The pre-crimped wires are available in various... read more
In stock
Price in points: 94 points

1134-010
£0.24 incl VAT (£0.20 exc. tax)
1134-010
Pre-crimped 26AWG 15cm long wire with female terminals on both ends. Together with our 0.1" cable assembly housings can be used to make custom cables. Sold... read more
In stock
Price in points: 40 points

1134-012
£0.24 incl VAT (£0.20 exc. tax)
1134-012
Pre-crimped 26AWG 15cm long wire with female terminals on both ends. Together with our 0.1" cable assembly housings can be used to make custom cables. Sold... read more
In stock
Price in points: 40 points

4607-001
£1.09 incl VAT (£0.91 exc. tax)
4607-001
Nylon Spacer 4mm Pk of 25 Plain untapped nylon spacers supplied in packs of 25. They have an O/D of 5mm with an I/D of 3.2mm making them suitable for... read more
In stock
Price in points: 182 points

1062-072
£13.06 incl VAT (£10.88 exc. tax)
1062-072
This powerful step-up/step-down regulator efficiently produces a fixed 6V output from input voltages between 3V and 30V while allowing a typical output... read more
In stock
Price in points: 2176 points