Testimonials Testimonials

Pololu Step-Down Voltage Regulator 5V or 3.3V 7A

£21.16
(£25.39 incl VAT)
Price in points: 4232 points
1062-049
1 item(s)
End of line
+

The compact (1.68"×0.46") D15V70F5S3 switching step-down (or buck) voltage regulator takes an input voltage between 4.5V and 24V and efficiently reduces it to a lower, user-selectable voltage. The selectable output voltages are 5V and 3.3V, and it can deliver up to 7A continuous in typical applications.

Overview

These buck (step-down) voltage regulators generate lower, user-selectable output voltages from an input voltage range of 4.5 to 24 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters) and have a typical (when the output current is several amps) efficiency of approximately 90%, which is much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. The output voltage defaults to 5V and can be changed to 3.3V by jumping 3V3 SEL.

The regulator has under-voltage and short-circuit protection, and thermal shutdown prevents damage from overheating. The board has reverse-voltage protection.

We also offer a 3.5A version of this regulator as well as other lower current alternatives.

Specifications

  • input voltage: 4.5V to 24V
  • typical continuous output current: 7A (Actual continuous output current depends on thermal dissipation. See Output Current section below for details)
  • output voltage selectable as 5V or 3.3V
  • 700kHz switching frequency
  • 45mA typical no-load quiescent current (300μA typical quiescent current with EN=0V)
  • integrated over-current shutoff
  • small size: 1.9" × 0.6" × 0.3" (48 × 15 × 8 mm)
  • weight without header pins: 0.2oz (6g)

Using the Regulator

Connections

The buck regulator has five connections: 3.3V select (3V3 SEL), enable (EN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The EN pin can be driven low (under 0.3V) to turn off the output and put the board into a low-power state that typically draws 300μA. The board has a 100kΩ pull-up resistor between EN and VIN. The EN pin can be driven high (above 2V) to enable the board, or it can be connected to VIN or left disconnected if you want to leave the board permanently enabled.

The input voltage, VIN, should be between 4.5 and 24V. You should ensure that noise on your input does not exceed the 24V maximum. When power is applied, the input voltage rise time must not be more than a few milliseconds; otherwise, the regulator can latch in an error state that disables its output.

The output voltage, VOUT, is determined by the 3V3 SEL jumper state. If the jumper is disconnected, the output voltage is 5V. With the jumper connected, the output voltage is 3.3V. An input voltage lower than the output voltage will not damage the board, but will cause a lower-than-selected output voltage, so we recommend you avoid powering the board with an input voltage below the selected output voltage.

Warning: Do not change the 3V3 SEL jumper while the regulator is powered. Doing so can cause the regulator to shut off until power is cycled.

The connections are labeled on the back side of the PCB. The eight smaller through-holes on the ends of the board are arranged with a 0.1" spacing for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1" grid. You can solder wires directly to the board or solder in either the 10×1 straight male header strip or the 2 terminal blocks that are included.

Output Current

The regulator’s over-current protection limits the output current of the board to 4.5 A. However, over-temperature protection will typically kick in at lower output currents. Therefore, the maximum achievable output current of the board depends on many factors, including the ambient temperature, air flow, heat sinking, and the input voltage. In our tests at room temperature, a continuous output current of 3.5 A was available across the entire input voltage range. These continuous current characteristics are limited by thermal dissipation; the regulator can output higher currents for several seconds or even tens of seconds, depending on how low the current is during the off-peak periods. Higher continuous output current can be achieved by reducing the input voltage or by cooling the board by adding a heat sink or a fan.

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Typical Efficiency

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator typically has an efficiency of 85 to 90%. For example, when regulating 12V to 5V with an output current of 1.8 A, the efficiency is 90%. Since the output power is (Output current)×(Vout) = 1.8A × 5V = 9W, the input power will be 10W, with 1W of heat dissipated in the regulator. The input current can then be calculated as 10W/12V = 0.83A. This is far better than a linear voltage regulator, which would require an input current of 1.8A and 22W, wasting 13W instead of the 1W lost in this switching regulator.

Manufacturer's Details

Manufacturer's SKU :
2111
Manufacturer:
Pololu

No posts found

Write a review

No FAQ found

1062-064
£2.93 (£3.52 incl VAT)
1062-064
The compact (0.4″ × 0.5″) D24V3F9 switching step-down (or buck) voltage regulator takes an input voltage between 11V and 42V and...
In stock
Price in points: 586 points

1062-065
£4.41 (£5.29 incl VAT)
1062-065
The compact (0.4″ × 0.5″) D24V6F9 switching step-down (or buck) voltage regulator takes an input voltage between 11.5V and 42V...
In stock
Price in points: 882 points

Customers also bought....

2700-085
£0.32 (£0.38 incl VAT)
2700-085
Gold Plated PCB Header 2.54mm pitch 36-way
In stock
Price in points: 64 points

2700-120
£1.14 (£1.37 incl VAT)
2700-120
These press-fit terminal pins are ideal for use with stripboard and make for an easy way of soldering wires to boards or as test points..
In stock
Price in points: 228 points

1130-050
£0.99 (£1.19 incl VAT)
1130-050
7/0.2mm Equipment Wire A high quality wire to DEF61-12 (Part 6) for general interconnection within apparatus. * 7/0.2mm tinned copper conductor...
In stock
Price in points: 198 points

1130-051
£0.99 (£1.19 incl VAT)
1130-051
7/0.2mm Equipment Wire A high quality wire to DEF61-12 (Part 6) for general interconnection within apparatus. * 7/0.2mm tinned copper conductor...
In stock
Price in points: 198 points

1130-058
£0.99 (£1.19 incl VAT)
1130-058
7/0.2mm Equipment Wire A high quality wire to DEF61-12 (Part 6) for general interconnection within apparatus. * 7/0.2mm tinned copper conductor *...
In stock
Price in points: 198 points