
SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

General purpose, metal to silicon diode featuring high breakdown voltage low turn-on voltage.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit			
V_{RRM}	Repetitive Peak Reverse Voltage		100	V		
l _F	Forward Continuous Current*	150	mA			
I _{FRM}	Repetitive Peak Forward Current*	350	mA			
I _{FSM}	Surge non Repetitive Forward Current* t _p	= 10ms	750	mA		
P _{tot}	Power Dissipation*	i= 80 °C	150	mW		
T _{stg} T _j	Storage and Junction Temperature Range - 65 to + 150 - 65 to + 125					
TL	Maximum Temperature for Soldering during 10s at 4mm from Case 230					

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
R _{th (j-a)}	Junction-ambient*	300	°C/W

^{*} On infinite heatsink with 4mm lead length

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol		Test Conditions		Min.	Тур.	Max.	Unit
V_{BR}	T _i = 25°C		$I_R = 10\mu A$	100			V
V _F *	T _i = 25°C		$I_F = 0.1 \text{mA}$			0.25	٧
	T _i = 25°C		$I_F = 10mA$			0.45	
	T _i = 25°C		$I_F = 250 \text{mA}$			1	
I _R *	T _i = 25°C		$V_R = 1.5V$			0.5	μΑ
	T _i = 60°C					5	
	T _i = 25°C		$V_R = 10V$			0.8	
	T _i = 60°C					7.5	
	T _i = 25°C		$V_R = 50V$			2	
	T _i = 60°C					15	
	T _i = 25°C		$V_R = 75V$			5	
	$T_j = 60^{\circ}C$					20	

DYNAMIC CHARACTERISTICS

Symbol		Min.	Тур.	Max.	Unit		
С	T _j = 25°C	$V_R = 0V$	f = 1MHz		10		pF
	T _j = 25°C	$V_R = 1V$			6		

^{*} Pulse test: $t_p \le 300 \mu s \ \delta < 2\%$.

Figure 1. Forward current versus forward voltage at different temperatures (typical values).

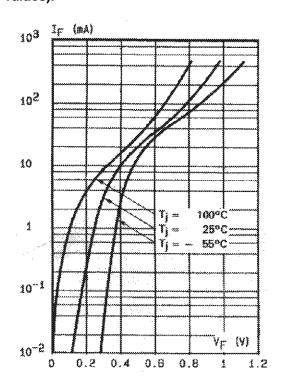


Figure 2. Forward current versus forward voltage (typical values).

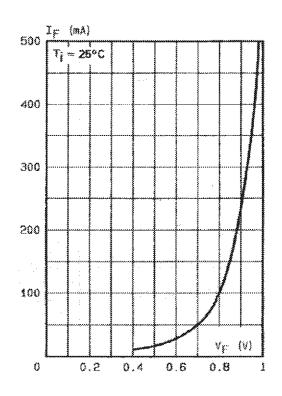
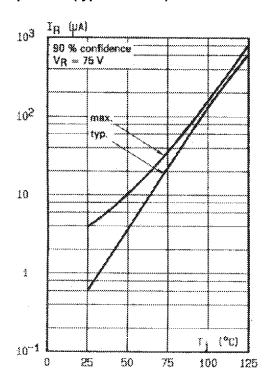



Figure 3. Reverse current versus junction temperature (typical values).

Figure 4. Reverse current versus continuous reverse voltage.

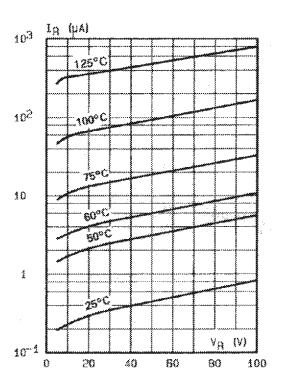
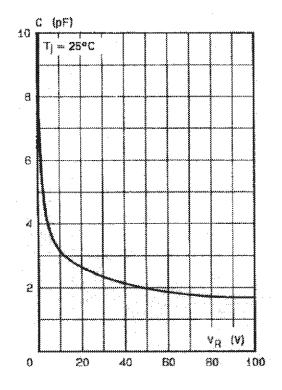
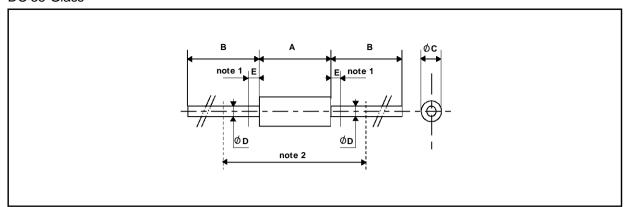




Figure 5. Capacitance C versus reverse applied voltage V_{R} (typical values).

PACKAGE MECHANICAL DATA

DO 35 Glass

	DIMENSIONS				
REF.	Millimeters		Millimeters Inches		NOTES
	Min.	Max.	Min.	Max.	
Α	3.050	4.500	0.120	0.117	1 - The lead diameter Ø D is not controlled over zone E
В	12.7		0.500		
ØC	1.530	2.000	0.060	0.079	2 - The minimum axial lengh within which the device may be placed with its leads bent at right angles is 0.59"(15 mm)
ØD	0.458	0.558	0.018	0.022	
Е		1.27		0.050	

Cooling method: by convection and conduction Marking: ring at cathode end. Weight: 0.05g